domingo, 14 de junio de 2009

latidos del corazon

En 1970, A. Zaikin y nuestro conocido A. Shabotinsky publicaron un artículo en el cual describían algunas peculiaridades de la reacción B-Z. Haciendo referencia a la propagación de las ondas producidas por las oscilaciones del sistema, decían que un modelo muy parecido debería aplicarse para explicar los impulsos de propagación en el músculo cardiaco. Una de las referencias que nos dan los autores es nada menos que un artículo aparecido en los archivos del Instituto de Cardiología de México, firmado por N. Weiner y A. Rosenblueth en 1946.
Podemos hacer una analogía entre la reacción química de B-Z y el músculo cardiaco imaginando que las "especies que se propagan" en el primer caso representan un potencial eléctrico para el segundo y que "el catalizador" está constituido por un conjunto de proteínas diseminadas en células especializadas. Las ecuaciones que gobiernan tal sistema, que incluyen la reacción y difusión, son diferenciales, como las que se aplican a las reacciones químicas que hemos descrito en el curso de este libro. Veamos entonces dónde entra el caos en el corazón.

Primero revisemos la forma en que trabaja. El corazón es un músculo cuya función es semejante a la de un motor; su contracción (sístole) alterna con periodos de reposo (diástole) y ese movimiento está gobernado por un sistema de "arranque" que asegura el funcionamiento automático de este sistema mecánico. Los datos electroquímicos asociados con el latido del corazón se registran mediante el electrocardiograma, inventado en 1903 por el fisiólogo holandés W. Einthoven, ganador del premio Nobel de medicina y fisiología en 1924. El principio es sencillo: la actividad de las células responsables del automatismo cardiaco se acompaña por fenómenos eléctricos característicos que se registran con la ayuda de electrodos dispuestos en la superficie del corazón. La contracción de las aurículas, que precede a la de los ventrículos es provocada por la activación automática y regular de un grupo de células anatómicamente diferentes de las células contráctiles situadas en la parte alta de la aurícula derecha. De ahí parte una corriente eléctrica que provoca la activación de las células vecinas de las dos aurículas, pero que es transmitida a los ventrículos al poco tiempo mediante otro grupo de células especializadas que forman una red que se disemina en los ventrículos, algo así como el "cable eléctrico" que permite la conexión entre las células especializadas en la conducción y las células cardiacas puramente contráctiles. La contracción está precedida por cambios eléctricos llamados despolarizaciones, que se registran mediante los electrodos. En el electrocardiograma se aprecia una primera onda que corresponde a la de polarización de las aurículas, seguida de una segunda provocada por la contracción de los ventrículos, y por último otra que proviene de la repolarización de los ventrículos.

L.Glass y colaboradores llevaron a cabo en Canadá un estudio experimental que ha revelado datos muy interesantes sobre el comportamiento de las células cardiacas. Los investigadores aislaron un grupo de este tipo de células en embriones de pollo, las cuales transferidas a un medio de cultivo apropiado, laten espontáneamente con un ritmo regular que se registra con la ayuda de diminutos electrodos. Estos últimos sirven también para enviar a las células pulsos de corriente en las diversas fases del ciclo espontáneo de latidos. Si se asume que la dinámica del movimiento del corazón puede ser representada por una ecuación diferencial que describe la evolución en el tiempo, la representación del oscilador cardiaco en un diagrama de fases describirá un atractor de ciclo limitado. Un estímulo eléctrico desplazará el oscilador hacia un nuevo punto en el espacio de fases, distancia que puede ser medida experimentalmente.

Glass y colaboradores observaron que al aplicarse un campo eléctrico fuerte, el latido siguiente ocurre más pronto o después de lo normal. Si se aplican impulsos periódicos el agregado celular se encuentra solicitado por dos fuerzas de periodos diferentes: uno con el ritmo intrínseco de las células cardiacas y el otro con el ritmo provocado por la corriente eléctrica aplicada externamente. El latido cardiaco que se produce dependerá de la relación existente entre los dos periodos. En ciertos casos las células laten una, dos o tres veces seguidas por cada dos impulsos externos, pero en otras circunstancias la contracción es aparentemente azarosa, produciendo formas irregulares, caóticas. Estas experiencias son interesantes porque muestran que se puede inducir caos en un sistema artificial que simula los procesos cardíacos. Además, cuando se comparan las dinámicas observadas en el experimento con las que detecta el electrocardiograma de pacientes cardiacos, existe una notable similitud. Glass ha llegado a la conclusión de que muchos problemas patológicos de los humanos son producto de lo que él ha dado en llamar enfermedades dinámicas. Este tipo de enfermedades, que es el caso de las cardiacas, resultan de cambios en las variables fisiológicas que normalmente se responsabilizan de los procesos rítmicos, las cuales de repente fluctúan de manera caótica. En el hombre adulto, el ritmo cardiaco normal es de 60 a 100 latidos por minuto. Hay dos grandes categorías de problemas rítmicos: por una parte está la aceleración de la frecuencia cardiaca, taquicardia, y por la otra la desaceleración del ritmo a menos de 60 latidos, que se conoce como braquicardia. Los síntomas de cualquiera de los dos tipos de enfermedades van desde la fatiga al esfuerzo, hasta la muerte súbita. En este último caso, es bien conocida la llamada fibrilación ventricular, que se manifiesta por una anarquía total de la contracción de las fibras musculares y que es antecedida por un ritmo cardiaco caótico generado por bifurcaciones periódicas como las que presenta la reacción de Belousov. Hay quien afirma, como es el caso de A. Goldberger de la Escuela de Medicina de Harvard, que el caos procura al cuerpo humano una flexibilidad que le permite responder a diferentes tipos de estímulos; para el caso específico del ritmo cardiaco afirma que en una persona normal éstos son caóticos. Su afirmación se basa en el análisis del espectro de frecuencia del electrocardiograma de personas sanas y pacientes cardiacos. Para el caso de los primeros, dice Goldberger, se presentan irregularidades que van desde algunos segundos hasta días, mientras que en los enfermos los espectros son más constantes. Como es común en las ciencias, hay quien refuta las observaciones del autor y afirma que no necesariamente existe el caos, ya que las irregularidades pueden s
er señales que se reciben accidentalmente en el organismo en el momento en que se hacen los registros.

No hay comentarios:

Publicar un comentario